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Abstract
Music composition from nonlinear dynamics has been a subject of thorough research, producing interesting music
tracks. Simple chaotic maps or even more complex iterative schemes have been proposed, taking advantage of the
“structured spontaneity” of nonlinear dynamics by directly transforming the mathematical objects to musical enti-
ties. In this work we examine the music compositions produced by two nonlinear systems in terms of complexity,
expressed through the Shannon Information Entropy of theirPitch Class Profiles. We present a methodology to in-
terpret the information obtained by the iterative equations to several tonal and rhythmic attributes. This methodology
is implemented in real-time software. A Graphical User Interface is provided that allows the user to adjust several
variables while listening to and observing the derived results.

Introduction

Various methods that simulate natural phenomena have been used for algorithmic music composition. These
phenomena are mostly described by simple and deterministicrules, but the resulting output sometimes ex-
hibits great structural complexity. Dynamic systems, either in the form of differential equations or as iterative
maps, have been used for sound synthesis and music composition. Especially in the latter case, very sim-
ple iterative schemes like the logistic function [7] or morecomplex ones [2], have produced music with
interesting structure. This kind of deterministic complexity can offer music that incorporates an amount of
information within the thresholds that a human listener considers satisfactory.

This work presents a methodology to translate information corresponding to a specific iteration of dy-
namical systems to musical entities that describe the pitch, intensity, duration, onset time and polyphony of
note events. This methodology is realized in real-time software by which the sonic output can be controlled
in real–time, with parallel graphical representation of the derived orbits. A modification of this application
is used to export alternative sets of compositions with two different tonal setups, diatonic and chromatic, and
results are reported on the Shannon Information Entropy (SIE) of their Pitch Class Profiles (PCP). Further-
more, the same feature is extracted from string quartets of Beethoven, Haydn and Mozart. The comparison
of the SIE of the PCP in all the aforementioned pieces provides insights about the potential “compositional
capabilities” of the examined dynamic systems for both tonal setups.

From Dynamic Systems to Music

We have built two applications [3] that allow the user to control several parameters and then listen to the
music synthesized by well–known and examined nonlinear systems. These systems are theChirikov Stan-
dard Map [1] and theHénon Map[6, 9], the rich dynamical properties of which have been thoroughly
examined [6]. These iterative maps are converted to music byassigning each point (or points in the case of
polyphony) of the current iteration to notes, with the use ofthe MIDI protocol.
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The Chirikov Standard Map is expressed by the system of equations

pn+1 = pn +Ksin(θn)

θn+1 = θn + pn+1

whereK > 0 is a constant, for the initial points we havep0, θ0 ∈ [0, 2π] andpn+1, θn+1 are taken modulo2π.
We consider the parameters of the Hénon Map as follows

xn+1 = cos(θ)xn − sin(θ)(yn + εx2n)

yn+1 = sin(θ)xn + cos(θ)(yn + εx2n)

whereθ ∈ [0, 2π] andε ∈ [−2, 2] are constants and the initial points,(x0, y0), are each in[−1, 1].

Each iteration of these two dimensional mappings provides apoint with two coordinates that we de-
note asx, y. These coordinates are used to describe note events that incorporate several attributes, namely
pitch, intensity(or velocity under the MIDI terminology),duration, inner onset intervalandpolyphony. The
current point of the iteration is used to describe all these music attributes. In the case of a polyphonic note
event, which includes multiple points, the current point isconsidered the last point of the iteration. The
interpretation of thex, y coordinates to the aforementioned musical attributes is accomplished separately for
each instrument. The complete process can be described as follows:

a) pitch: the user provides a tonal range[tmin, tmax],∈ N and the pitch heightt of a note event is computed
by normalizing thex ∈ [xmin, xmax] coordinate in the selected range. Hence

t =

[

(x− xmin)(tmax− tmin)

xmax− xmin

]

+ tmin,

where[x] = ⌊x+ 0.5⌋ is the nearest integer rounding of a real numberx. The latter formula computes
the normalized quantities as described below for intensity, duration and polyphony.

b) intensity: the user provides an intensity range[vmin, vmax],∈ N and the intensityv of a note event
is computed by normalizing they ∈ [ymin, ymax] coordinate in the selected range using the formula
described for the computation of pitch.

c) duration: the user provides a duration constant,α, that determines the overall duration of the note
events produced by an instrument, with lower values creating staccatoand higher values producing
legatoplay feelings. We considerd to be the normalized value of|x − y| from within the range of
[

0,max{|xi − yj|}i,j∈{min, max}
]

to the range of[10, 100]. The duration of the current event in mil-
liseconds is provided as the multiplication ofα with d.

d) inner onset interval: the user provides four values,qr, r ∈ 1, 2, 3, 4, that represent the onset duration
of a note event that corresponds to quartile of the coordinates of the respective point. I.e., if we suppose
that the current note event hasx, y coordinates, then the next note event will occur in a time interval of
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q1 if x > π andy > π

q2 if x < π andy > π

q3 if x < π andy < π

q4 if x > π andy < π

,

in the case of the Hénon map or the Standard map respectively, whereqr represents a duration selected
by the user among2nds, 4ths, 8ths, 16ths and32nds.

e) polyphony: the user provides a polyphony index,p, which is the upper limit of simultaneous notes
that an instrument is allowed to play. The polyphony of the current note event,pc, is computed as the
normalized value of|y − x| ∈

[

0,max{|yi − xj |}i,j∈{min, max}
]

to the range of[1, p].
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All values that are required along with some additional controls are adjusted by the user through a
Graphical User Interface (GUI). These controls include thereal–time adjustment of the coefficients and the
current iteration point, while graphical monitoring of thederived orbits is also provided. Furthermore, the
user can define a global musical scale for the composition, orseparate scales for each instrument. The user
can assign all the aforementioned properties to different instruments within a list, creating several orchestra-
tion combinations.

Results

To examine the complexity potential of the compositions obtained by the proposed approach, as mentioned
previously, we computed the Shannon Information Entropy (SIE) [8] of the PCP for 1200 music tracks
composed with the Standard and the Hénon maps. The PCP of a piece describes the distribution of pitches
throughout the piece and the SIE of this PCP describes the sparseness of this distribution. In particular, these
pieces were composed for random initialx, y values and coefficients (K, θ, ε) and were divided into 4 sets
with 300 tracks each, composed with different composition scale setups:SD (Standard Diatonic) andHD
(Hénon Diatonic) were composed using major diatonic scales andSD (Standard Chromatic) andHC (Hénon
Chromatic) were composed in the chromatic scale. The tonal center for all these compositions was random.

To compare the SIE values provided by the PCPs for the aforementionedartificial compositions with
the ones obtained by real music compositions, we also analyzed 150 string quartets, in particular 50 music
pieces composed by Beethoven, Haydn and Mozart, denoted asBsq, Hsq andMsq respectively. Information
related to the SIE of the PCP among these string quartets has previously provided promising results for
composer identification [4].

Table 1 shows the the mean values (µ) and the standard deviations (σ) of the SIEs from the PCP dis-
tribution of all the aforementioned datasets. First, we observe that the string quartets have a greater SIE
mean than the artificial pieces. Moreover, the artificial pieces composed in a diatonic scale (HD andSD) are
indicated to be considerably less complex than real–world compositions. The chromatic artificial compo-
sitions on the other hand seem to have a less “complex” PCP distribution than the string quartets, but with
greater standard deviation. Figure 1 illustrates the distribution of the SIEs among all compositions with box
plots. It is indicated that the “compositional” capabilities of the Hénon map in chromatic scale are more
flexible than the ones of the Standard map, meaning that a wider range of complexity can be achieved by the
corresponding compositions.

Artificial compositions String quartets
HD SD HC SC Bsq Hsq Msq

µ 1.5976 1.3236 2.0620 1.6488 2.2082 2.1355 2.1181
σ 0.2966 0.3844 0.4432 0.5242 0.0933 0.0971 0.1018

Table 1 : Box plot of the mean values obtained by the PCP distribution among pieces of theHD,
SD, HC, SC, Bsq, Hsq andMsq data sets.

Conclusions

In this work we have presented a system that composes music through two well–known nonlinear systems of
equations, the Standard (or Chirikov) map and the Hénon map. A methodology for transforming information
by these iterative schemes to musical entities has been presented, which is realized in a real-time software
application. The utilization of the Shannon Information Entropy (SIE) has allowed a comparative analysis of
the compositions of the proposed approach in different modes. Additionally, indications for the complexity of
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Figure 1 : Box plots of the PCP distribution SIEs of the examined pieces.

these compositions compared to real–world pieces were provided by the comparison of the aforementioned
SIEs with the respective ones in string quartets of Beethoven, Haydn and Mozart.

These results can be further amplified with the utilization of more sophisticated musical features. For
example, the information provided by the PCP is “stationary”, in a sense that the transitions between scale
degrees is not considered. The transitions can be captured with the utilization of the Markov transition
tables [5] (or the N–Gram models). Furthermore, the rhythmic complexity of these compositions should be
examined. Finally, we intend to formulate an intelligent system that controls the coefficients of the nonlinear
systems in order to produce music that satisfies certain musical criteria. This will allow the exploration of
the compositional potentiality of the presented approach more extensively.
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