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Abstract 
An earlier work of the authors introduced an adapted version of the Computational Geometry Algorithm (CGA) 
designed to analyse an audio stream and produce a unique coding-independent fingerprint. As the adaptability 
and the induced calculation load of the proposed algorithm form a key characteristic for multiple applications, 
our current investigation aims to measure its performance and stability in dynamic, real-time applications, i.e., in 
large audio library indexing and dynamic audio recognition. In addition, we investigate the fact that context 
similarity is also evident across fingerprints; hence a number of comparisons are used to explore the possible 
uses of this highly desirable algorithmic feature. 
Keywords: audio fingerprinting, computational geometry, audio signal processing, experimentation 

1. Introduction 
The wide availability of Internet connectivity and media-enabled devices has altered the way content is produced, 
distributed and finally reproduced. Increased demand for all types of audiovisual streams is clearly evident, as 
most network traffic today consists of multimedia data exchanged in global scale (Deliyannis, 2012). 
Digitization and networked distribution of audio, video, live broadcasts and the increased demand for interactive 
control, leads authors and companies to the path of content re-use and reproduction via customization of existing 
content and distribution (Karydis, Deliyannis, & Floros, 2011) through networked multimedia databases and 
multicast systems. Within evolving markets such as electronic multimedia-content retail and exchange points, 
various new services emerge (Deliyannis, Karydis, & Anagnostou, 2011). In comparison to traditional media, 
new access methods alter the way that data are distributed and reproduced, often forming new applications and 
domains such as interactive and new-media arts (Trifonova, Jaccheri, & Bergaust, 2008), while changing the user 
culture in terms of content use (Gillespie, 2004). These global changes introduce new markets and services 
(Simpson, 2004), a fact that is clearly evident when observing the evolution of standards such as MPEG-7 
linking content to context and offering multimedia accessibility for all as with MPEG-21 (Kosch, 2004). The 
considerable content availability through various media will certainly require new broadcast-control and 
verification mechanisms to be established, a sector that may be aided by current research. 

Computers are also employed in the area of copyright management under a wide variety of applications, one 
example being the application of pattern-matching algorithms and techniques to identify copyrighted content 
(Furht & Kirovski, 2005; Karydi, Karydis, & Deliyannis, 2012). The task is straightforward in text-based 
applications. This particular data format is transferred and delivered in complete form, without loss of content 
during transfer and reproduction, a fact that significantly aids the pattern-matching process. In contrast, audio 
(and/or video streams) are often degraded in terms of quality due to the employment of various compression 
techniques and the inevitable stream re-compression processes introduced by the wide variety of transmission 
formats available in all media-enabled platforms. These algorithmic-based compression processes such as MPEG 
1, 2, 3 and 4 are based on mechanisms of human perception for minimizing the required transmission bandwidth. 
Ultimately, conversion between various media formats alters significantly the original information, a fact that 
introduces various problems in the identification process, as error and distortion are clearly evident when 
contrasting original versus transmitted data.  
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The present paper can be considered to be a continuation of our latest research which lays the necessary 
theoretical foundation research on audio fingerprinting based on convex layer definition in the frequency domain 
(Poulos, Deliyannis, & Floros, 2012). In this work the experimental aspects of a novel algorithm for defining 
convex layer areas over audio signal spectral peaks as a track identification procedure are addressed in an 
attempt to standardize the identification process. According to our view, the latter process is clearly identified as 
a key issue that needs to be resolved before this technology may be exploited commercially. Our experimentation 
indicates that beyond direct pattern matching, dynamic content detection is also possible. In that respect, once 
the standards are related to the semantic layers (fingerprints) of information and communication systems, 
important consequences arise that require further research under Music Information Retrieval (MIR) research 
(Aucouturier & Pachet, 2003; Casey et al., 2008; Chandrasekhar, Sharifi, & Ross, 2011; Levy & Sandler, 2009; 
Logan, Ellis, & Berenzweig, 2003; Marsden, 2010; McFee, Barrington, & Lanckriet, 2010; McKay & Fujinaga, 
2008; Slaney, Weinberger, & White, 2008; Wang, 2003). Our previous research indicates application areas such 
as gaming (Deliyannis, Karydis, & Anagnostou, 2011; Karydis et al., 2011) and copyright identification 
(Deliyannis, Karydis, & Karydi, 2011; Karydi et al., 2012). 

The paper at hand is organized as follows. Section 2 briefly presents a synopsis of the Computational Geometry 
Algorithm (CGA) audio fingerprinting algorithm. This is an issue covered fully in our theoretical definition of 
the above algorithm published recently (Poulos et al., 2012) and the reader is encouraged to refer to this article 
for a detailed algorithmic and mathematical analysis. Next, Sections 3 and 4 provide extended experimentation 
cases based on a number of widely-employed application scenarios and present the results obtained using 
multiple forms of audio content as well as the statistical evaluation of the derived data. Finally, Section 5 
concludes this work by proposing future research directions. 

2. Related Study 
In our latest study, a novel audio content identification (matching) approach is presented, based on the significant 
reduction of the original spectral peaks enclosed in convex layer areas (Poulos et al., 2012). This work 
introduced audio-track identification through the use of computational geometry algorithms, where the problem 
of matching sample peaks with original peaks was addressed using an intersection technique between convex 
layers. In particular, this approach produced a convex polygon in the frequency domain that resembles a 
coordinate-based pattern in terms of a unique set of points that can be considered to be the audio data 
“fingerprint.” In the above work it was also shown that this fingerprint pattern is coding-independent, a fact that 
provides indications that the proposed algorithm may be suitable for multiple purposes and applications, 
including the categorisation of content identity and the identification of audio clips, hence providing support for 
the realisation of audio sorting/searching tasks and services. 

The above described method was realised via the use of the Computational Geometry Algorithm (CGA), a 
computationally efficient scheme of onion-like layers that results into unique frequency-domain representations 
of the innermost onion layer (Poulos et al., 2012). More specifically, the digital audio signal under identification 
(test signal), denoted here as x(n), is initially transformed in the frequency domain and represented in terms of its 
Power Spectral Density (PSD) X(f) via Bartlett’s estimation. The same procedure is applied on the original 
(reference) signal xref(n), producing the Xref(f) PSD vector of size N. Then, the CGA algorithm is applied on the 
derived PSD data, producing onion-like layers denoted in the case of reference signal as S. An example of such 
algorithmically constructed layers is graphically represented in Figure 1. Finally, a critical algorithmic parameter, 
the total depth of layers (or the k-depth value) is defined, following the algorithm described again in our latest 
study (Poulos et al., 2012). Finally, by algorithmically isolating the k-th inmost layer, we obtain the convex 
subset Sxy that corresponds to the reference signal. The same procedure is applied on the test signal PSD data and 
the k-th convex subset Nxy is similarly derived. During the final matching/identification process, the intersection 
of the above convex subsets Sxy and Nxy is computed, that is: 

xy xy xyS N R∩ =  (1)

The identification procedure is completed by extracting the degrees of similarity s1 and s2 using the computed 
areas (A) of the calculated convex subsets (Sxy, Nxy and Rxy) using the following fractions (see also Figure 1): 
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Figure 1. A graphical representation of the onion-like layer extraction process 

 
The above identification/matching process architecture is graphically illustrated in Figure 2. 

 

 
Figure 2. Schematic representation of the preprocessing, feature extraction and identification stages 

 
3. Implementation Issues-Decision Stages 

The degrees of correlation s1 and s2 (see Equations 1, 2) between Sxy and Nxy (see Section 2) are calculated 
according to the selected null hypothesis. The null hypothesis claims that there is no link between the two 
sampled subsets. Since the distribution of the subsets is unknown, a reasonable strategy is to use a 
non-parametric approach for testing the hypothesis and thus to use permutations to obtain the subsets distribution 
under Η0=0 with p=0.05 in which all the subsets present random distribution. However, in our case, we used an 
alternative hypothesis, Η1, which controls the specific similarities between the groups. More specifically, under 
the current study, we investigated the following three decision stages: (a) the pairs of audio fingerprints are 
identified; (b) the pairs of audio fingerprints have common features; and (c) the pairs of audio fingerprints are 
not identified. 

For this, the decision rules are extracted by the unsupervised clustering k-mean procedure. Thus, one particular 
issue with the dataset of vector Si (see Equation 1) is to define the number of categories. In order to achieve a 
safe result, we use the well-established k-means clustering algorithm to examine whether the three targeted 
decision groups are the optimal clustering approach for the dataset presented later in Table 1. The procedure 
follows a trivial way to classify a given data set through a certain number of clusters (assuming k clusters) fixed 
a priori. The main idea is to define k centroids, one for each cluster. These centroids should be placed in a 
cunning way, because different locations cause different results and a loop evaluates this case recurrently. In our 
case we submitted the data set (of Table 1) into k = 3 clusters, using Equation 3: 
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purposes of the above application scenarios, this content was compressed using the MPEG-1 Layer III standard 
at different typical coding bitrates (i.e. 32, 48, 64, 96, 112,128, 160, 192, 256 and 320 kbps) in order to produce 
the audio content under identification for the previously described application scenarios. 

In order to realize the above application scenarios in practice, for the experiments followed, we divided the audio 
tracks database into two sets: 

• The first set is formed by 10 (different typical coding compression schemes) x 3 (different music genres 
considered) = 30 (total music tracks). 

• The second set consists of short-length audio clips (with time-duration equal to 3 seconds). These clips 
were produced by randomly setting a 3-seconds time window on the compressed audio data. For each 
audio-recording genre considered (violin, rock and orchestra) we created 5 randomly selected short-audio 
clips, resulting into a total of 5x30=150 clips belonging into the second dataset. 

In the testing procedure, we create 4500 pairs combinations between two sets m=30 and k=150, extracted by 
Equation 4: 

                               (4)
 

The three investigation scenarios presented earlier allow a number of possible application suggestions to be 
made. These include copyright applications that include the interactive and fairer calculation of royalty charges, 
which may then be attributed directly to the copyright owners. Creating a sensing networked device that is 
installed in order to constantly monitor, identify and report on the commercial use of audio (radio & TV stations) 
is certainly a novel application which will allow producers the flexibility to interactively select and broadcast 
content. Also the partial-detection feature may enable charging in a per-second tariff, instead of a flat charge that 
applies today. The limited sample duration required for this algorithm to detect the source is clearly an advantage 
that may also boost the commercial application of the method for personal use, enabling the optimisation of 
current algorithms used in proprietary applications. Finally, the availability of a tool that detects similarity across 
different versions of the same theme allows a number of tools that may be used as a research or commercial tool 
to detect audio influences, automatic categorisation of content and copyright issues which could have been 
missed in the past.  

As it will be shown in the next Sections, exhaustive testing across all datasets described above showed that the 
CGA-based fingerprint-matching algorithm performs well across different compression schemes and most 
importantly when random segmented tracks are considered. We must also note here that an audio signal 
time-length equal to 3 seconds outperforms most industrial-level algorithms utilised today in audio proprietary 
recognition applications which work efficiently for samples greater than 10 seconds (Chandrasekhar et al., 2011). 

The sequence of tests performed was organised in the following manner: For every music theme we assessed the 
performance of the proposed algorithm for all considered compression rates, a fact that allowed to identify how 
well the algorithm performed in music theme recognition at varying compression rates and audio quality. In the 
testing procedure (Note 1), we considered 4500 pairs of combinations between the two databases sets defined 
previously. 

4.1 Case 1: Compressed Application Scenario 

As mentioned previously, under this application case, the three different audio tracks considered as testing 
material were encoded using the the MPEG-1 Layer III lossy compression standard at different typical coding 
bitrates, specifically equal to 32, 48, 64, 96, 112,128, 160, 192, 256 and 320 kbps. The compressed content was 
then decoded, producing a distorted, uncompressed version of the original track. We then applied the CGA 
algorithm on the original data, as well as on this uncompressed version, and we calculated the degrees of 
correlation for these signals. Based on the implementation analysis provided in Section 3, we obtained 
identification or no-identification results for all the combinations of the compressed audio material considered. 

A representative set of the above results is presented in Tables 1 and 2. For illustration purposes, we present only 
the diagrams and values obtained for the violin recordings. Clearly, the CGA algorithm successfully identifies 
the compressed audio signal correctly, under any selected compression bit rate (even for those that imply lower 
sampling rates, such as the 32kbps). The same trends were observed for both the rest music tracks considered 
here (rock and orchestra). This fact is illustrated in Figure 4, were the degrees of correlation s1 and s2 values are 
graphically presented as a function of the compression bit rate. Obviously, in all test cases, at least one of the s1 
or s2 values exceeds the thresholds defined in Section 3 (and presented in this Figure using the black dashed line), 
producing a secure and accurate identification outcome.  

_ * 4500Testing Number m k= =
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Table 6. Wilcoxon Paired - Sample test on k-means clustering 

S vector  
k means clustering 

Wilcoxon 
Paired-sample test s1 s2 

         0 0 1 
p = 0.0020 

 
 

h =1 
 
 

The test rejects the null 
hypothesis of equal 

medians at the default 
5% significance level 

         0 0 1 

         0 0 1 

         0 0 1 

         0 0 1 

         0 0 1 

         0 0 1 

    0.0200 0.0800 1 

    0.0800 0.1000 1 

    0.1400 0.1000 1 

    0.1900 0.2000 2 
p = 0.0036 

 
 

h =1 
 
 

The test rejects the null 
hypothesis of equal 

medians at the default 
5% significance level 

    0.2600 0.2100 2 

    0.5600 0.3800 2 

    0.5800 0.4100 2 

    0.5900 0.4200 2 

    0.6100 0.4200 2 

    0.6100 0.4300 2 

    0.6200 0.4500 2 

    0.6300 0.4800 2 

    0.6300 0.5000 2 

    0.7200 0.7400 3 

 
 
 
 
 
 
 
 

p = 0.0405 
 
 

h =1 
 
 

The test rejects the null 
hypothesis of equal 

medians at the default 
5% significance level 

 
 
 
 

    0.7300 0.7700 3 

    0.7500 0.7900 3 

    0.7600 0.8200 3 

    0.8100 0.8600 3 

    0.8100 0.8600 3 

    0.8400 0.9000 3 

    0.8400 0.9000 3 

    0.8500 0.9100 3 

    0.8500 0.9100 3 

    0.8600 0.9200 3 

    0.9100 0.9200 3 

    0.9100 0.9200 3 

    0.9100 0.9300 3 

    0.9100 0.9300 3 

    0.9400 0.9700 3 

    0.9600 0.9800 3 

    0.9600 0.9900 3 

    0.9700 0.9900 3 

    0.9700 0.9900 3 

    0.9800 1.0000 3 

    1.0000 1.0000 3 
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5. Conclusions 
This study’s major objective was to try to evaluate a mechanism of audio detection similarity and fingerprinting 
that, under certain circumstances, can be inserted into the information-management strategies of (large) 
information organisations and large, co-operative libraries as a technique for the identification and possible 
control of the intellectual property of electronically published audio material. The existing techniques, and 
especially the digital signature schemes, could fulfill only the first, the identification and part of the objective. 

In particular, this work employs the adjustment of a computational geometric algorithm for the semantic 
representation of the information of audio data in terms of a frequency-domain audio fingerprint. The idea for 
this construction came from the test of the onion-peeling algorithm in other areas of signal processing, such as 
the identification of humans by fingerprints. The aim of this application is to construct an audio fingerprint (i.e. 
in terms of a serial number) that could identify a copyright-protected published audio file even if its file format 
has changed from one type to another. Furthermore, it aims to provide a satisfactory amount of correlation 
similarity with other audio files created from the original by applying different coding / compression techniques, 
and to detect and automatically reject audio files that are not related to the original.  

For a realistic implementation and efficiency assessment of the proposed audio fingerprinting algorithm, the 
authors created a small database with three different audio genres encoded using the MPEG-1 Layer III 
specification at multiple compression ratios, enabling experimentation with internal and external data-sets. This 
demonstrated the computational efficiency of the algorithm, which was sucessfully used under three different 
application scenarios: the first investigates matching of a full audio clip duration using varying compression 
settings. In the second scenario compression and sample duration vary while the third introduces context testing 
across different performances and orchestrations. This last scenario introduces a “common feature” tracking 
mechanism, which allows automated comparison of different audio tracks that share musicological 
characteristics. For instance, we found that the audio clip containing the violin may be partially associated with 
instrumental tracks containing the violin (orchestra file), a characteristic that was consistent across a wide variety 
of experimental executions. 

We additionally proved, via the Wilcoxon sample paired test, that the categories of the intersection areas between 
different or same audio clips are related strongly. We also found that the fingerprint features must be aligned 
temporally; that is, if a set of features appears in both the original recording in the database and in a sample 
query, the relative positions of each feature within each recording must be the same. The computational load of 
the algorithm behaves linearly (i.e. O(2n)) for each comparing tuple and may be bounded with a second-order 
polynomial for the comparison procedure O(2n^2) under the worst-case scenario. 

Our future research on this work topic will focus on the comparison of the algorithmic results for data with 
varying similarity. Mixed audio tracks and segments may be used for pattern matching, enabling automated 
copyright-verification to be performed. The authors believe that the same algorithm may also be utilised for 
other multimedia data types including images, video, text and combined applications such as web pages, 
multimedia systems and databases.  

Acknowledgements  

We would like to acknowledge the assistance of Nicos Skiadopoulos for the development of the web-application, 
enabling researchers to dynamically test our data or their own. 

References 
Aucouturier, J. J., & Pachet, F. (2003). Music similarity measures: Whats the use? Paper presented at the 

International Symposium on Music Information Retrieval. 

Casey, M. A., Veltkamp, R., Goto, M., Leman, M., Rhodes, C., & Slaney, M. (2008). Content-based music 
information retrieval: current directions and future challenges. Proceedings of the IEEE, 96(4), 668-696. 
http://dx.doi.org/10.1109/JPROC.2008.916370 

Chandrasekhar, V., Sharifi, M., & Ross, D. A. (2011). Survey and Evaluation of Audio Fingerprinting Schemes 
for Mobile Query-By-Example Applications. Paper presented at the International Conference on Music 
Information Retrieval (ISMIR). 

Deliyannis, I. (2012). From Interactive to Experimental Multimedia. In I. Deliyannis (Ed.), Interactive 
Multimedia (pp. 3-12). Rijeka, Croatia: Intech.  

Deliyannis, I., Karydis, I., & Anagnostou, K. (2011). Enabling Social Software-Based Musical Content for 
Computer Games and Virtual Worlds. Paper presented at the 4th International Conference on Internet 



www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 1; 2013 

82 
 

Technologies and Applications (ITA2011).  

Deliyannis, I., Karydis, I., & Karydi, D. (2011). iMediaTV: Open and Interactive Access for Live Performances 
and Installation Art. Paper presented at the 4th International Conference on Information Law (ICIL2011).  

Furht, B., & Kirovski, D. (2005). Multimedia Security Handbook (illustrated ed.). CRC Press. 

Gillespie, T. (2004). Copyright and Commerce: The DMCA, Trusted Systems, and the Stabilization of 
Distribution. The Information Society Journal, 20, 239-254. http://dx.doi.org/10.1080/01972240490480938 

Karydi, D., Karydis, I., & Deliyannis, I. (2012). Legal Issues in Using Musical Content from iTunes and YouTube 
for Music Information Retrieval. Paper presented at the International Conference on Information Law.  

Karydis, I., Deliyannis, I., & Floros, A. (2011). Augmenting Virtual-Reality Environments with Social-Signal 
Based Music Content. Paper presented at the 17th International Conference on Digital Signal Processing 
(DSP2011). http://dx.doi.org/10.1109/ICDSP.2011.6004944 

Kosch, H. (2004). Distributed multimedia database technologies: supported by MPEG-7 and MPEG-21: CRC 
Press. 

Levy, M., & Sandler, M. (2009). Music information retrieval using social tags and audio. IEEE Transactions on 
Multimedia, 11(3), 383-395. http://dx.doi.org/10.1109/TMM.2009.2012913 

Little, R. J. A., & Rubin, D. B. (1987). Statistical analysis with missing data (Vol. 2). New York: Wiley. 

Logan, B., Ellis, D. P. W., & Berenzweig, A. (2003). Toward evaluation techniques for music similarity. Paper 
presented at the SIGIR 2003: Workshop on the Evaluation of Music Information Retrieval Systems.  

Marsden, A. (2010). Recognition of Variations Using Automatic Schenkerian Reduction. Paper presented at the 
International Society for Music Information Retrieval.  

McFee, B., Barrington, L., & Lanckriet, G. (2010). Learning similarity from collaborative filters. Paper 
presented at the International Society for Music Information Retrieval.  

McKay, C., & Fujinaga, I. (2008). Combining features extracted from audio, symbolic and cultural sources. 
Paper presented at the International Conference on Music Information Retrieval.  

Poulos, M., Deliyannis, I., & Floros, A. (2012). Audio Fingerprint Extraction using an Adapted Computational 
Geometry Algorithm. Computer and Information Science, 5(6), 88-97. 
http://dx.doi.org/10.5539/cis.v5n6p88 

Simpson, S. (2004). Explaining the commercialization of the internet: A neo-Gramscian contribution. 
Information, Communication & Society Journal, 7(1), 50-68. 
http://dx.doi.org/10.1080/1369118042000208898 

Slaney, M., Weinberger, K., & White, W. (2008). Learning a metric for music similarity. Paper presented at the 
Information Society for Music Information Retrieval. 

Trifonova, A., Jaccheri, L., & Bergaust, K. (2008). Software engineering issues in interactive installation art. Int. 
J. Arts and Technology, 1(1), 43-65. http://dx.doi.org/10.1504/IJART.2008.019882 

Wang, A. (2003). An industrial strength audio search algorithm. Paper presented at the International Conference 
on Music Information Retrieval (ISMIR). 

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80-83. 
http://dx.doi.org/10.2307/3001968 

Xing-ji, G. (2005). Structure ansd Application pf WAV File. Retrieved from http://www.elecfans.com/ 

 
Note 
Note 1. In order to enhance comprehension and allow external verification of the experimental results, the reader 
may access a web-based application under the following URL:  
http://lit.ionio.gr/index.php?option=com_content&view=article&id=70&Itemid=101&lang=el 

 


